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INTRODUCTION 

Many times it is necessary to measure parameters of the 

atmosphere, such as temperature, pressure, and velocity, at 

locations where it is either Impractical or dangerous to mount 

mechanical instruments and supports. For example, knowledge 

of the instantaneous wind profile along the flight path of an 

airplane as it approaches a landing strip would make the land­

ing safer. Mounting mechanical instruments in the flight path 

to obtain this information would be a definite hazard. Also 

of interest are the atmospheric phenomena which take place in 

the scattering volume of a tropospheric communication link. Not 

only would the mounting of mechanical instruments in the volume 

be impractical, but the very presence of such instruments would 

distort the electromagnetic field and make accurate comparison 

of data difficult. Thus, a remote method of measuring atmos­

pheric parameters in the scattering region is desirable. 

The propagation of an acoustic wave is governed by various 

atmospheric parameters. Monitoring an acoustic wave as it 

propagates would give information about these atmospheric 

parameters. Because the monitoring is to be remote, a radar 

signal will be considered as the chief method of investigating 

the acoustic wave. 

When an acoustic wave of finite length and of a known 

amplitude is launched into the atmosphere and illuminated with 

a radar signal, some back-scattering of the electromagnetic 
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energy will take place. The variation of the returned 

electromagnetic energy can give much information about the 

propagation characteristics of the acoustic waves under 

various atmospheric conditions. Atmospheric processes which 

affect the propagation and the amplitude of the acoustic wave 

thus can be measured. A method is needed which allows evalua­

tion of the return signal of the radar from a finite length 

acoustic wave train propagating in a known atmosphere. Prom 

the information obtained by considering the acoustic wave in 

a well-defined atmosphere, a valid comparison can be made with 

a disturbed atmosphere, that is, an atmosphere where the 

pressure, temperature, and velocity are unknown. 

Random pressure, temperature, and/or water vapor pressure 

(sic) disturbances, when illuminated by a radar signal, will 

reflect a part of the incident electromagnetic energy. In 

general, the details of the spatial and time distribution of 

the refractive index are unknown; therefore, calculation of 

the reflected electromagnetic energy is very difficult, if 

not impossible. If, however, the distribution of the 

refractive index is known and can be considered time as well 

as spatially stationary, then the reflection coefficient from 

this distribution can be found. This study considers the 

one-dimensional simplification of this problem. 

The problem of electromagnetic energy reflection from a 

sinusoidal pressure wave will be considered first. The effect 
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of variation of the acoustic frequency deviations, magnitude 

of the pressure fluctuations, and the length of the acoustic 

pulse will be investigated and the influence of these factors 

on the reflected electromagnetic energy noted. 

High-powered acoustic pressure waves can be generated 

easily in the atmosphere by the use of a siren or some form of 

a whistle. The equations which govern the propagation of 

these high-powered acoustic waves in the atmosphere are non­

linear. The nonlinear characteristics of the atmosphere cause 

a progressive distortion of the acoustic wave as it moves away 

from the generator. If it is necessary to use high-powered 

acoustic waves to obtain a satisfactory reflected radar 

signal, an investigation of the propagation characteristics 

of this type of acoustic wave must be made. It will be seen 

that for the case discussed in this thesis, the acoustic wave 

must be considered high-powered. Mobile radar receivers and 

transmitters are limited in power output and receiver 

sensitivity; therefore, to obtain a predetermined amount of 

returned signal, propagation of a high-powered acoustic wave 

is desirable. The effect of the finite amplitude on the 

acoustic wave will be discussed. 

For most of the calculations in this thesis, the assump­

tion is made that the acoustic wave can be turned on and off 

Instantaneously. Physically, however, this assumption is not 

entirely valid since the mechanical methods usually used to 
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generate the acoustic wave have finite build-up and decay 

times. Therefore, rather than being perfectly uniform, the 

acoustic wave will be modulated. The numerical technique to 

be presented here allows calculation of the reflection 

coefficient for any desired acoustic wave shape. 
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REVIEW OF LITERATURE 

Two distinct problems are to be considered in this study. 

The first problem considers the reflection of electromagnetic 

energy from a known refractive index distribution. The second 

considers the propagation of a finite amplitude acoustic wave. 

A detailed numerical study of the finite amplitude acoustic 

wave was not attempted. Rather, an analytical method of attack 

on a finite amplitude acoustic wave is presented and the neces­

sary Information about the pressure distribution obtained from 

this approach. 

Brillouin (3) presents a detailed discussion of the 

propagation of waves in periodically stratified media. The 

solution of Mathieu's and Hill's equation is duscussed. The 

classical treatments of these two equations assume that the 

periodic media are infinite in extent. Solution of the 

Mathieu equation for a finite length of the periodic media 

can be accomplished; but, in general, for the accuracy 

required and the numbers involved, a great amount of computer 

time is necessary. A faster method of numerical solution of 

this specific problem is needed. 

Barrar and Redheffer (l) made a study of the fields in a 

dielectric medium which varied in one dimension. Their 

approach was to consider the media to be sectioned into 

parallel homogeneous slabs. The fields inside the slabs were 

then found. From these fields a differential equation 
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describing the wave impedance was found. This equation was then 

solved to give the reflection and transmission coefficients 

of a system. Schmltt and Wu (l2, 13) considered the case of 

an electromagnetic wave incident upon a tank filled- with oil 

into which an acoustic wave had been launched. The formula­

tion presented was the solution of the standard Mathieu equa­

tion; verification of the formulation was obtained experiment­

ally. Jones and Patton (8) considered a transmission line 

analogy to a sinusoidal variation of the relative dielectric 

constant. Their system involved the solution of the Riccati 

equation. Jones and Patton gave data for the magnitude of 

the reflection coefficient. 

Richmond (ll) considered slabs of dielectric and derived 

a set of difference equations for a numerical solution of the 

wave equation in the slab. Reflection and transmission 

coefficients were found and an error analysis performed to 

find the best step size for use in the computer solution of 

the difference equations. Fetter, Smith, and Klein (6) 

conducted both experimental and analytical work on the problem 

of tracking an acoustic burst with a doppler radar system. 

Their study was an attempt at remote measurement of the wind 

velocity of the atmosphere. 

Relatively large variations of the dielectric constant 

have been considered by most investigators. However, Jones 

and Patton (8) considered the finite length of the acoustic wave 

as well as small magnitude changes in the refractive index. 
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Fat (5) made a study of high-powered acoustic waves by 

an intricate method of Fourier series analysis. He concluded 

that, as the wave propagates away from the source, an 

initially sinusoidal wave gradually distorts into a sawtooth-

shaped wave. More recently Blackstock (2) has also shown that 

if an intensity of 16O-I7O db (reference intensity of 10"^^ 

watts/cm ) is used, a sawtooth wave does occur in the limit 

of large distances. For high intensity acoustic waves, above 

100 db, the wave shape distorts into a sawtooth wave. As 

the power is increased, the distortion will occur closer to 

the source. 
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MATHEMATICAL DEVELOPMENT OP THE PROBLEM 

Development of the Analytical Description of the 

Electromagnetic Acoustic System 

The method of development of the necessary equations to 

describe the interaction of the electromagnetic wave with a 

one-dimensional distribution of the refractive index follows, 

in large measure, the development presented in Richmond's 

paper (ll). 

Maxwell's equations will be used, with the following 

conditions assumed to hold: 

1. there is no free charge in the atmosphere. 

2. the permeability, |a, is spatially constant, indepen­

dent of the acoustic wave. 

3. the atmosphere is a lossless dielectric medium. 

4. the refractive index disturbance is assumed to be 

both time and spatially stationary in relation to 

the electromagnetic wave. 

5. the electromagnetic wave propagates as a uniform 

plane wave with its direction of propagation in the 

x-dlrection. 

6. the permittivity, e, of the atmosphere varies only 

w i t h  X .  

The assumed restrictions on the media and the electro­

magnetic wave allow simplification of the equations which will 

be derived. Essentially these restrictions on the media 

require that the disturbance, at the instant it is illuminated 
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by the electromagnetic source, be momentarily fixed in time 

and space. In keeping with these assumptions, the permittivity 

is assumed to have no time dependence. 

Maxwell's equations, with the above assumptions taken 

into account, thus can be stated as: 

(1) 

V .(D = 0 (3) 

V .§ = 0 (4) 

The curl of Equation. 1, combined with Equation 2 and 

the vector identity7x(7x/f), gives: 

V x(V  X £)  =V(V  -  6  ) - = -|-iG (5) 

Equation 3 can be written as: 

V  - e f .  =  ê ' V e  +  - è  =  0  ( 6 )  

Prom Assumption 5, the electric field will be of the form 

£= Re [/2 CUy Ë exp (ijwt) ] (?) 

where Ë is a phosor. From Assumption 6 £  'V  e =  0 therefore 

V ' Ë = 0. Making these substitutions. Equation 5 becomes 

^ = -[isA = -k^ e Ë (8) 

where k = — = c = _1_ , uu is the angular frequency 
° Ao 0 V^-^o o 
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of the electromagnetic wave, X is the electromagnetic wave 

length, and Is the electromagnetic wave number. The 

relative dielectric constant is the x-dependent variable 

in an otherwise classical one-dimensional wave equation. 

Equation 8 must hold inside the region of interest as well as 

satisfy the boundary conditions. 

In the atmosphere the relative permittivity can be 

expressed as a function of pressure (P), temperature (T), and 

water vapor pressure (W). Smith and Weintraub (l4) give the 

relative permittivity as = r?, where n = 1 + f (P,T,W") (10~^) 

= 1 + f(lO~^). The term f(lO~^) is normally a small quantity. 

If typical sea level conditions are assumed, f(lO~^) ~ 3(lO~^)j 

hence, ~ 1 + 2 f(lO~^), when second-order terms are 

neglected. 

'  " '  - 6  

The interaction of f(lO ) with the incident electro­

magnetic field will, in general, be small; thus, a perturbation 

form of the solution of the electric field. Equation 8, can 

be made. The assumption, therefore, is made that: 

Ë = (9) 

where Ë is the total field and is the perturbation field 

caused by the interaction of f and . Ë^ will be much smaller 

than Ë^, and it will be assumed that terms of the order 

(Ë^)(f)(10~^) will be negligible. 

Direct substitution of Equation 9 into 8 and the 

neglecting of second-order terms reduce Equation 8 to: 
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d^Ê d^Ë ^ 
o + g = _k^ [Ê + 2f(lO-^)É + 1 ] (10) 

dx dx 

Since Is the solution to the wave equation which must hold 

in a region where no spatial variation of Ë^ exists. Equation 

10 can be separated into two equations, viz, 

^ + k^ti = -ic^lo 2f(10-®) (11) 

cfE 

-1?= 

If the solution for Equation 12 is a traveling wave of 

the form Ë^e^'^o^ and Equation 11 is normalized by dividing 

through by Ë , E can be expressed in terms of its normalized 
° ^ E 

real and imaginary parts — = R+jI. Equations 13 and l4 

^0 
follow when it is assumed that the function f is real: 

2 
4-5: + k^R = 2f(lO-G) COS k^x (13) 
dx^ " ° ° 

+ A = 2f(l0'^) k^ sin k^x (l4) 
^2 0 / o o 

If f(10~ ) is known. Equations 11 and 12 can be solved readily, 

and the total filed inside the region of interest can be found 

from Equation 9. Only a solution for Equations 13 or l4 is 

needed as the equations are in phase quadrature with respect 

to time. The discussion to follow, however, assumes both 

of the equations are to be solved. - -

The reflection coefficient can be found once Ë^ is 

known. 
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Reflection Coefficient in Terms of the Perturbed Field 

The scattering region, that is, the region where the 

refractive index varies, is shown in Figure 1 where 

Ë^, and are the phasor notations for the incident, reflected, 

and transmitted electric fields respectively. 

At boundary A, :.| | = So I Ëj I ( 15 ) 

At boundary B, = 1 <o (l6) 

It is assumed here that is zero until f is of sufficient 

magnitude to interact with to produce an , This assump­

tion obviously requires that = É, at boundary B. 
0 V 

The transmitted wave Ë^ may be assumed to be any value 

consistent with the boundary condition B and the normalization 

used in Equations 13 and l4. The transmitted field is assumed, 

for convenience, to have a magnitude of unity and an associated 

phase angle of zero. 

The standard equations for the transmission and reflection 

coefficients are expressed by Ramo and Whinnery (lO) as: 
E. 

; = (17) 

^i 

T = ^ (18) 

T = 1-p (19) 

These equations along with the boundary conditions will be 

used to find the reflection coefficient. Elimination of T 

and p from Equations 17, l8, and 19 gives the obvious result 

that, at any point x: 
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Figure 1. Schematic representation of the scattering region used 
to find the expression for the reflection coefficient 
as a function of the perturbed field. 
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SCATTERING REGION 

(REGION OCCUPIED BY 
ACOUSTIC BURST) 

Êo + Ê; = Ê 

BOUNDARY A 

ET=lA. 
I I I !  nil I 1^^ 

M 4=-

BOUNDARY B 
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(20) 

Substituting boundary condition l6 Into 15 gives: 

^1 + ^ + ̂ 1 (21) 

When Equation 21 Is subtracted from Equation 20,  an expression 

when ~ 1. Later calculations will show that, for the 

problems of practical Interest, the reflected power Is always 

much smaller than the Incident and transmitted power; hence, 

~ 1, which justifies the approximation used to obtain 

Equations 22 and 23. As previously stated. It Is the reflection 

coefficient. Equation 22, that Is of Interest. 

The Method of Numerical Solution of the Differential Equation 

The perturbed wave Equations 13 and l4, although linear, 

have spatially periodic coefficients and, hence, are not 

conveniently solved by a simple technique. However, by the 

use of a standard program for numerical solution of such 

equations, a solution can be Implemented easily. 

The standard library Runge-Kutta program used to solve 

these equations requires that the second-order differential 

equation be separated into two first-order differential 

for E^ is obtained. The reflection and transmission coeffi­

cients can be written as: 

p = E^/2E^ ~ E^/2 (22)  

T - 1 - E./2 (23) 
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equations. In Equation 13, substituting 2% and = R 

results in: 

2 f )  9  
+ k^Z = -2f(l0"°) cos k X (24) 

dx o 2 ^ ' 0 o' 
dZL 

Zl = -te (25) 

Equations 24 and 25 are thus coupled first-order differ­

ential equations, which must be satisfied in the region of 

Interest and which must be solved together. This same type 

of substitution can be used on Equation l4, with the resulting 

expression: 

dZq p p 
0 + = -2f(lO 1^; Icjc (26) dx ^ ^4 

dZ. 
^3 = -di . (27) 

To obtain a unique solution to a second-order differ­

ential system, two boundary conditions must be established. 

Therefore, to complete the solution of the perturbed second-

order differential equation, two boundary conditions must be 

found. These boundary conditions will be used in conjunction 

with the respective pairs of equations. Equations 24 and 25 

and Equations 26 and 27. 

Initial conditions 

For the numerical program used, it is necessary to find 

values of Z^, Zg, Z^, and Z^ at the point x = 0, hereafter 

described as the origin. For convenience the origin is chosen 

as a point on the leading edge of the acoustic burst as it 
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propagates away from the transmitter. To find these values, 

a Taylor series expansion of 1 and will be made at a very 

small distance, h, from the origin into the region of 

scattering (see Figure 2). In the Taylor series expansion, 

the coefficients of the expansion are evaluated at x = 0, and 

the expansion is evaluated at x = h. 

If E is a wave of the form the Taylor expansion 

for Ë(h) becomes 

E(h) = 1 - ̂  Cgkg - I" + j [hk^- §- Gyk^] 

where is the spatial derivative of the dielectric constant. 

When is expanded in a similar manner, 

1 - (hf/s) kg + - (h3/6)k3] . 

Prom the assumed Equation 9 for the total field, Ë, and the 

approximate equation for e , É, is found to be: 
2 '3 3 3 

l^(h) = -[h2k2f|x.h+ f'lx.b](10-G)+j ̂  

(28) 

The ratio of the imaginary part of the series expansion 

to the real part of the expansion is approximately hk^=2TTh/\^. 

For small values of h/X , the imaginary part of the series 

expansion of Ë^(h) can be neglected. 

The perturbed field É^(x) in the small distance, h, 

from the origin is assumed to have the form of 

Ë^(x)= R+jl = [ReE^(h)](cos k^x+j sin k^x) for (O < x < h). 
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Fi.gure 2. Schematic representation of a known distribution of the 
' dielectric constant used in the derivation of the 

boundary conditions. 

1 
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where ReÈ^(h) Is the real part of Equation 28, the series 

expansion of Ë^(h). 

At the origin, the spatial derivative of the real part 

of Ë^(x) will be zero; therefore, However, there 

will be a real component of the Ë^(x) field at x=0 so that 

%2lx=0=%G[Ëi(h)]. 

At the origin, the imaginary part of will be zero; 

thus, There will be a value of the spatial deriva­

tive of Ê^(x) so that Zglx=Q=koRc[E^(h)]. 

In summary, the boundary conditions are: 

For the real part ~ -(h^k^fl^^^f f Ix_^)(l0"^) 

of Ë^(x) at,x=0 

-â# = Zllx.O=0 (29) 

dZ^ p h \^  r  
For the imaginary --3^; - -k^fh k^flx^h +--3-- f'lx=h)(lO- ) 

(30) 

part of E, (x) at x=0 

Z4 = 0 

The value of h/X must be small to give a good estimate 

of the boundary conditions. The solution for the reflection 

coefficient, however, is relatively insensitive to the boundary 

conditions if they are of the correct order of magnitude. 

Thus far, only limited mathematical restrictions have 

been placed on the function f: f must be a known one-dimen­

sional function which is continuous and possesses continuous 
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derivatives in a region h. In the derivation of the boundary 

conditions, it is tacitly assumed that the higher-order 

derivatives can be neglected. The physical phenomena which 

produce the fluctuation in f(lO"^) have not been limited in 

any sense. However, to check the formulation, the effect of 

initial conditions, and the reflection from a finite length 

periodic pressure wave, the assumption will be made that 

2f(10 in Equations 24 through 27 is of the form lO'^sin k x, 

2rr ^ where k. =-^- =--- is the acoustic wave number. 
a °a 

Approximation of the Reflection Coefficient from a 

Sinusoidal Pressure Field 

A sinusoidal distribution of pressure will now be assumed 

in order to develop an analytical technique which allows a 

determination of the sensitivity of the reflection coefficient 

to parameters which can be varied experimentally. The form of 

the pressure distribution, in keeping with the previous 

assumptions, will be K sin k_x, where K is a constant. 
d. 

Therefore, n = 1 + 10'^ sin k_x. 
a 

For the derivation of the reflection coefficient, the 

model shown in Figure 3 will be used, and the equation for the 

reflection coefficient from a lossless dielectric will be 

assumed to apply: 

— Z  _  

n - - ̂  ( 11 ) 
P ~ Z,+Z " 1+n 
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Figure 3. Schematic representation of the refractive 
index used to derive an analytical approximation 
for the reflection coefficient. 
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The approach to be followed. In the development is to find, 

in general, a Ap and its associated phase angle by assuming 

single reflections and using Equation 31. A p, which is an 

approximate reflection coefficient for the acoustic burst, 

is found by taking the limit of the expression for the 

A p ' s,, and integrating. 

A wave which is measured at point A (see Figure 3) will 

travel a distance 2x to and from the disturbance and, thus, 

will contribute a phase factor to the reflection coefficient 

of The change in p can be written as follows: 

=XI i"x) 

In the limit, the refractive index, n, will change very little 

from unity. Thus, 

IpI =  il.r^ I ;  (33) 
0 

where L is the overall length of the perturbed region of n or 

the acoustic pulse length. Equation 33 is similar to that 

obtained by Smith and Rogers (l5). If N is the number of 

acoustic cycles and is the acoustic wave length, L = 

NX = Because n is assumed to be sinusoidal. Equation 33 
a 

will have a principal maxima when kg^ = 2k^: 

IpI =  I J  k^x dx| =  1 ^1 (34) 

For a sinusoidal pressure distribution, the reflection 

coefficient will increase linearly with the magnitude of the 
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pressure and the number of acoustic cycles, that is, the 

length of the acoustic pulse. 

Small Angles of Incidence and Acoustic Frequency Change 

A small change in the direction of propagation of a 

sinusoidal acoustic pressure wave, being tracked by radar, 

will mean that the electromagnetic energy will make a small 

angle of incidence with respect to the direction of propaga­

tion of the acoustic wave. One of the effects of the change 

in the angle of incidence is to make an apparent change in the 

acoustic wave length. 

To begin a study of the effect of the angle of incidence 

on the reflection coefficient, the following approximations 

are made : 

1. the angle of incidence is small. 

2. the angle of the radar reflection is such that it 

can be picked up by the receiver. 

3. the transmitted angle is the same as the incident 

angle. 

Approximation 2 implies Approximation 1, but this assumption, 

nevertheless, must be kept in mind. At some large distance 

between the transmitter and receiver, the small angle assump­

tion still may be valid; but it is possible that no reflected 

signal would be incident on the receiver antenna. Approximation 

3 can be shown to hold for the case of interest by using Snell's 
sin 0n i 

Law, which states: ̂  g = [e /e ]'2 = n^/n^ where 6^, 8 , e 
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and Gg are defined-in Figure 4. For the extreme case which 

might be encountered, n^ = 1 + K(lO~^) and = 1 - K(lO~^). 

For the order of magnitude of the K's considered, n^ 2' n^; 

therefore, 0^ ~ 0^, and Approximation 3 Is then justified. 

Because the transmitted angle and the incident angle can 

be considered equal, an axis rotation can be made. If a 

rotation of the axis is performed as shown in Figure 5, then 

to the electromagnetic wave propagating along the x' axis, 

the apparent wave length of the acoustic wave Increases. The 

acoustic wave number k^, for the rotated coordinate axis, is 

= k cos 0. The length, L' = L/cos 0, is the interaction 

length of the electromagnetic wave with the acoustic wave. 

For small angles, the reflection coefficient should not change 

radically. 

If the acoustic frequency were to change and the velocity 

of acoustic propagation remain constant, k would change. The 

change in the acoustic wave number caused by the angle of 

incidence could be construed as an apparent change in the 

acoustic frequency. For large values of cos 0, Approximations 

1 and 2 do not hold; but the numerical data obtained can be 

used to find the effect of a shift in the acoustic frequency. 

Both the acoustic and electromagnetic waves are assumed to be 

plane waves for purposes of calculating the variation of the 

reflection coefficient with acoustic frequency. 
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Figure 4. Schematic diagram used to indicate quantities 
used in Snell's Law. 

Figure 5. Schematic diagram of the axis rotation used for 
small angles of incidence. 
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Reflection from Modulated Acoustic Waves 

In the discussion to this point, the assumption was made 

that the acoustic wave could be instantaneously started and 

stopped; in most cases, this assumption is not valid. 

Mechanical methods which, are used to generate the acoustic 

wave usually have finite rise and decay times associated with 

them. The problem of finding the reflection of the electric 

field from a modulated sinusoidal wave is handled easily with 

the previously presented formulation. 

Three cases of the modulated acoustic burst will be used 

as examples. The values of the reflection coefficients and 

the graphs of the perturbed field will be given in the section 

on Calculations and Data. 

The first case considered is that of an acoustic wave 

which is half sine wave modulated as shown in Figure 6. In 

Equations 24 and 25the expression 2f(l0~^) = 10"^ sin k x 

sin ̂  x is substituted. 

The second case considered is a damped sinusoidal wave 

starting at the origin. In this instance, the expression 

2f(l0"^) = 10~^e~'^^sln k^x is substituted into Equations 24 

and 25. This wave is shown in Figure 7. The' a is chosen 

to be compatible with the acoustic decay which might be 

expected from a mechanical source. 

The final case to be studied is an acoustic wave which 

is not modulated until some distance Lj then the acoustic wave 
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Figure 6. Schematic representation of an acoustic 
burst modulated by a one-half sine wave. 

Figure 7. Schematic representation of an acoustic 
burst modulated by a damped exponential. 

Figure 8. Schematic representation of a practical 
modulated acoustic wave form. 
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is allowed, to decay in an exponential manner. The a is the 

same a used in the second case. This wave shape is close 

to what would be expected in a practical situation. This wave 

form is shown in Figure 8. 
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CALCULATIONS AND DATA 

Three values of the reflection coefficient were cal­

culated and presented by Jones and Patton (8). Their values 

were 7.64(10"^), 7.86(10"^), and 7.9l(lO"^). Their first 

value was obtained by considering the general problem of 

reflection from a sinusoidally stratified dielectric in terms 

of a transmission line analogy. Formulation and solution of 

the problem in terms of the Mathieu function gave results of 

7.9l(lO~^) for the reflection coefficient. An analytical 

method (sic), which they did not describe, yielded 7.86 

(10~^) as the reflection coefficient. These values of the 

reflection coefficient will be compared with the values 

obtained by the use of the technique presented here. In 

keeping with the normalization used by Jones and Patton, 

= 200tTj k^ = IOOtt, and 2f(l0~^) = 10"^ sin k^x were 

substituted in Equations 24 through 27; and x was allowed to 

vary from zero to 0.2 meters. In the evaluation of the 

initial conditions, hk^ in Equations 29 and 30 was assumed to 

be 0.174 radians, that is, approximately 10 degrees. 

Prom such information, a complete solution for this 

specific problem can be found. A subroutine which allows 

numerical evaluation of the equations is easily written. 

The reflection coefficient obtained from the formulation 

presented here was |p| = 7.86(10"^), which is well within 

the bounds of Jones and Patton's published results. A graph 
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of the real and imaginary parts of this solution over half 

the region of interaction, from the origin to 0.1 meters, is 

shown in Figure 9. 

The effect of the initial conditions is most noticeable 

near the origin. If a solution near the origin is needed 

(as, for example, in the case of a short acoustic burst), 

more accurate boundary conditions are needed. Using smaller 

values of h to evaluate the boundary conditions will give a 

more accurate solution at the origin. More computer time, 

however, might be required to provide the needed accuracy in 

this region. 

The sensitivity of the solution to the initial conditions 

was checked by dividing and multiplying the initial conditions 

by a factor of 5. The results are shown in Table 1. Inspection 

of Table 1 shows that the boundary conditions have little effect 

Table 1. Effects of boundary conditions on Re[E,] at x=2(lO~^) 
meters 

Boundary Conditions Re[E^] at x = 2(l0~^) meters 

Re[E^(h)] 1.570 X 10'^ 

Re[E^(h)]/5 1.5707 x 10"^ 

Re[E^(h)](5) 1.5686 X 10"^ 

on the value of the solution at a distance as short as one-

half of an acoustic wavelength. As the point of evaluation 

moves away from the origin, the effects of the boundary 



www.manaraa.com

Figure 9. A plot of the normalized perturbed scattering field as a 
function of distance for a sinusoidally varying pressure wave, 
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conditions tend to be even less evident. 

Equation 34 predicts that the magnitude of the reflec­

tion coefficient varies in a linear manner with the magnitude 

of the acoustic pressure and the number of acoustic wave­

lengths that are Illuminated by the electromagnetic energy. 

As a check on the sensitivity of the reflection coefficient 

to the parameters of the acoustic burst, as predicted by 

Equation 34, 2f(l0~^) was set equal to alO"^ sin k x. The 

graph of the variation of the reflection coefficient for 

different values of a is given as Figure 10. Variation of 

the magnitude of the reflection coefficient with the number 

of cycles of the acoustic burst is the same as the variation 

of the magnitude of the reflection coefficient with the dis­

tance in the region of interaction. A plot of the reflection 

coefficient magnitude as a function of distance for a = 1 is 

shown in Figure 11. The functional agreement with Equation 34 

is evident. 

As the frequency of the acoustic wave changes, the 

reflection coefficient should change. When k^ = 2k_, the 
3, o 

reflection of electromagnetic energy is maximum. If this 

relationship changes, the reflection of electromagnetic 

energy will change; thus, the reflection coefficient will 

change. It has been shown previously that the data obtained 

from a change in the angle of incidence can be construed as a 

change in the acoustic frequency. 
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Figure 10. The graph of the magnitude of the-
reflection coefficient to the variation 

of the refractive Index, n = 1 + alO"^ 
sin k x. 

Si 
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Figure 11. The graph of the magnitude of the 
reflection coefficient to the number 
of acoustic cycles or distance from 
the origin. 
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Figure 12 shows a plot of the variation of the reflection 

coefficient versus the angle of Incidence, that Is, the angle 

that the electromagnetic wave makes as It Impinges on the 

acoustic wave. The fractional change of the acoustic frequency 

is also indicated. It is apparent that no real change in the 

reflection coefficient occurs until the acoustic frequency 

changes about 3 percent; this change corresponds to an angle 

of incidence of about 12 degrees. 

In the appendix, it is shown that the acoustic wave, as 

it propagates away from the source, gradually approaches the 

shape of a sawtooth wave with a sharp leading edge. For ease 

of numerical solution of the reflection coefficient from this 

wave shape, it was assumed that the function f could be 

described quite adequately in terms of the first three components 

of the Fourier series expansion of a sawtooth wave. The sum 

of the squares of the coefficients of the truncated Fourier 

series was set equal to the square of the magnitude of the 

sinusoidal acoustic wave used in the previous calculations, 

that is, a pressure wave which gave a refractive index of 

n = 1 + 10" sin k^x. By, setting the "power" of the first 

three components equal to the total sinusoidal acoustic 

"power", the three Fourier components of f were evaluated. 

To find the effect of the second and third harmonics 

on the reflection coefficient, the principle of superposition 

was imposed and the program run with the appropriate changes 
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Figure 12. The graph of the reflection coefficient magnitude as a 
function of the angle of incidence and the percent acoustic 
frequency deviation. 
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in the acoustic wave number (k_). The resultant reflection 

coefficients are shown in Table 2. 

Table 2. Comparison of reflection coefficient from a pure 
sinusoidal wave and a sawtooth acoustic wave 

Refractive index Reflection db from 
variation coefficient Reference frequency 

2f(10" •^)=10"^sin ka% 7.86(10-6) 0 

2f(10" '^^=.855(10' '^)sin k^x 6.73(10-6) -1.4 

2f(10" •^)=.427(10" '^)sin 2kg_x 1.015(10'!°) -97.8 

2f(lO" •^)=.285(10" •^)sin 1.11(10"!°) -97.0 

It is easily seen from these calculations that the'higher 

order harmonics do not contribute significantly to the reflec­

tion coefficient. The assumption can be made that the high-

powered acoustic wave, even though it propagates as a sawtooth-

shaped pressure wave, can be considered to be a sinusoidal 

wave with an amplitude which is determined by the Fourier 

amplitude coefficient for the fundamental frequency of the 

wave. 

Three examples of modulated acoustic waves will be 

considered next. The same interaction length as used for the 

sinusoidal wave will be used to check the procedure and 

formulation in the first two cases, but the last example will 

consider a longer interaction length. 

f 
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The first wave form to be considered is that of a 

modulated wave where 2f(lO"^)= 10"^ sin 5ttx sin SOOrrx. This 

wave form is shown in Figure 6. The real part of the perturbed 

field is shown as Figure 13. The magnitude of the reflec­

tion coefficient of such a wave is |pl = 5.0(lO~^), a smaller 

magnitude than that of the sinusoidal wave. 

The second example is that of a damped sinusoidal wave 

of the form 2f(lO~^) = 10~^e"^^^sin 200rrx, as illustrated in 

Figure J. The damping factor fo 20 was chosen since it 

approximates the decay of an acoustic burst following shut­

down of a mechanical acoustic source of the type used by 

Fetter, Smith, and Klein (6). A graph of the real part of 

the perturbed field is given in Figure l4. The reflection 

coefficient was found to be 1.88(10"^) for L = .2 meters. 

The last example is that of the modulated wave illustrated 

in Figure 8. The wave-is a constant magnitude sinusoidal wave 

of the form 2f(l0~^) = lO'^sin 200ttx for a length, L = 0.2 

meters, from the origin, followed by a damped sinusoidal wave 

given as 2f(l0~^) = lO'^e"^*^^^"'^^sin 200n(x-.2) to a distance 

of 0.4 meters. The increased interaction length of the wave 

shape over the sinusoidal wave leads to an increase in the 

magnitude of the reflection coefficient to 9.75(lO~^). 

Because the interaction length (L) is chosen to include 

an integral number of acoustic wave lengths, the reflection 

coefficient has only a very small phase angle associated with 
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Figure 13. The graph of the variation of the real part of the perturbed 
field caused by a modulated acoustic wave of the form 

10"^ sin 5itx sin 200itx. 

I 
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\ 
Figure l4. The graph of the variation of the real part of the 

perturbed field caused by a modulated acoustic wave 

of the form 10 ^^^sin 200ttx. 
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It. The graphs of the perturbed fields show that, if the 

acoustic wave were terminated at any point other than at an 

Integral number of acoustic wave lengths, the reflection 

coefficient would have a phase angle which Is determined by 

the real and Imaginary parts of at the point of termination. 
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CONCLUSIONS 

A general formulation of a mathematical model to describe 

the Interaction of an electromagnetic wave and a known one-

dimensional distribution of the refractive index is presented. 

The model is of a form which is easily solved by the use of 

numerical techniques. 

A sinusoidal pressure distribution was assumed in order to 

check the model and the boundary conditions with published 

results of other models. Agreement is found between the pub­

lished and computed results. 

The refractive index was approximated by a stair-step 

function to obtain an estimate of the incremental reflection. 

In the limit of differential step size, an estimate of the total 

reflection was determined by integration over various inter­

action lengths. This analytical technique indicated that the 

reflection coefficient varied linearly with both the pressure 

and the interaction length. Quantitative values of the reflec­

tion coefficient were not obtained readily by this approach. 

As predicted, the numerically computed reflection coefficient 

was found to vary in a linear manner with the magnitude of 

pressure as well as with the interaction length. 

The reflection coefficient varies with the frequency 

of the acoustic wave as well as with the angle of incidence 

that the electromagnetic wave makes with the acoustic wave. 
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The frequency variations of the acoustic signal and the angle 

of incidence have the same apparent effect on the reflection 

coefficient in the limit of small angles of incidence. 

Variations of the reflection coefficient with frequency and 

angle of incidence were calculated for a sinusoidal pressure 

distribution. It was found that the angle of incidence must 

be on the order of 10 to 12 degrees before the reflection 

coefficient varied appreciably. This is equivalent to a 

frequency deviation of the acoustic wave of two percent or 

less from the frequency of maximum reflection. 

Mechanical methods are, conventionally, used to measure 

parameters of the atmosphere. Mechanical instruments have 

inherent disadvantages, such as finite response time, expense 

of construction, and the necessity of supporting structures. 

It is of great interest to find some method of measuring 

remotely the instantaneous parameters of the atmosphere. 

The propagation characteristics of an acoustic wave 

launched into the atmosphere depend on the atmospheric para­

meters. If the propagation of the acoustic wave could be 

monitored, the parameters, hopefully, could be measured. One 

logical method of remotely monitoring the behavior of the 

acoustic wave involves the study of radar reflection from the 

atmospheric disturbance caused by the acoustic wave in a 

combination acoustic-electromagnetic probe arrangement. 

Before such a probe would be useful, however, it is necessary 
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to know how the electromagnetic wave Interacts with the 

acoustic wave and which parameters of the acoustic wave have 

the greatest effect on the electromagnetic wave. 

Many studies of the reflection of electromagnetic energy 

from a known spatial variation of the dielectric constant 

have been made. For the most part, investigators have consi­

dered only those problems where the relative permittivity 

varies quite radically from a constant. However, variations of 

the refractive index in the atmosphere are, in general, very 

small. To simplify the solution of the problem of a small 

variation of the refractive index, a perturbation technique 

was found which is easily adapted to standard methods of 

numerical solution. The formulation of the general problem is 

such that if the acoustic wave shape or any other spatial 

distribution of the refractive index is known, the reflection 

coefficient can be found. Acoustic power levels necessary 

-6  
to obtain a refractive index variation in the order of 10 

Involve non-linearities In the atmosphere with the effect of 

reducing the reflected electromagnetic energy to a value well 

below that expected from this type of wave in the linear 

atmosphere. The approach developed in this thesis permits 

the determination of the reflection from any arbitrarily-

shaped, spatial index of refraction. 

Several extensions of this work should be carried out 

before the results of acoustic-electromagnetic probe 
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measurements will be meaningful. These extensions include 

the effects of atmospheric non-llnearltles and turbulence on 

the acoustic wave and the question of experimental methods 

which could be used to study the effect of the atmosphere on 

the acoustic wave. 
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APPENDIX A 

This appendix, for purposes of completeness, will describe 

the media in which the acoustic wave must propagate. The 

atmosphere, for the cases of the type considered in this thesis, 

can be described by the fluid continuity and momentum equations 

and by its thermodynamic properties. The thermodynamic pro­

perties of the atmosphere are contained in the expression for 

the velocity of sound and will not be considered explicitly. 

To analyze acoustic wave propagation, small signal 

acoustics will be considered first; an extension then will be 

made to higher-powered acoustic waves. For simplicity, only 

the one-dimensional problem will be considered. 

Derivation of Continuity Equation 

Continuity in a fluid dynamic system means that mass 

can be neither created nor destroyed. It follows that the 

difference between the mass flow into and out of a unit volume 

per unit time must be equal to the time rate of change of 

the density within the volume. 

When a cylindrical section such as is shown in Figure 15, 

having a unity cross-sectional area and a length Ax, is 

considered, it is easily seen that the mass flow into the 

section per unit time is pu, where p is the mass density, and 

u is the X direction velocity. Similarly, the mass flow out 

o f  t h e  c y l i n d r i c a l  s e c t i o n  p e r  u n i t  t i m e  i s  ( p + A x )  
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Figure 15. Schematic representation of the volume 
used for the derivation of the one-
dimensional continuity equation. 

Figure l6. Schematic representation of the volume 
used for the derivation of the one-
dimensional momentum equation. 
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(u + -|^ Ax). The condition of continuity Implies that 

pu - [u Ax][p + Ax] = -|̂  ax. If second-order product 

terms are neglected, this equation reduces to the oneOdlmenslon-

al form of the continuity equation: 

p i# + u i# = - it 

Derivation of Momentum Equation 

The force acting on a fixed mass of fluid Is a conse­

quence of a pressure differential across the volume of fluid. 

This force gives the mass an acceleration In the direction 

of the force. Since the velocity of a compressible fluid 

can be a function of both position and time, the total 

acceleration of a mass pAx in a one-dimensional system, such 

as shown in Figure l6, is: 

du 5u 5u 5x 5u 9u 
dt ~ at ÔX at ~ at ^ ax 

The net force acting on a mass pAx is: [P - (P+ a x ) ]  

= - ax. Newton's Law equates these two forces to give; 

PAX AX 

Division of this equation by pAx gives the one-dimensional 

momentum equation: 
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Derivation of the Equation for the Speed of Sound 

The speed of propagation of a small disturbance in a 

gas is, by definition, the speed of sound (C: ). The distur-; 8-

bance will be represented in terms of its velocity, its density, 

and its pressure. These quantities are interrelated and 

spatially dependent as indicated in Figure 17. 

In a steady flow, that is, a fluid flow which has a 

constant velocity and density, the continuity Equation 1-A can 

be written as - V = p where V is the velocity of the 

disturbance. The change in momentum then can be expressed as; 

V^p+P = (V + 1^ a^O^Cp  +1^ Ax) 

Neglection of the second-order terms reduces these equations 

to : 

The continuity equation just given, used in conjunction with 

the momentum equation, gives the square of the velocity of 

propagation of the disturbance: 

V® = f (3-A) 

If the process is adiabatic, then 0^ = V = where. ----- ----- -a - = 

for the atmosphere, y = 1.40. 

Small Signal Acoustics 

The momentum and continuity equations plus the velocity 

of sound describe the media in which the acoustic wave pro­

pagates. These equations are sufficient to allow a solution 
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Figure 17. Schematic representation of a small 
discontinuity used for the derivation of 
the acoustic speed of sound. 
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for particle velocity (u), the density (p), and the pressure 

(p). 

To begin a study of finite amplitude pressure wave propa­

gation, it is first necessary to make a study of small signal 

acoustic waves. Prom a consideration of small signal acoustics, 

considerable information can be found which will be useful in 

the derivation of the propagation characteristics of finite 

amplitude pressure waves. 

The difference between small signal and finite amplitude 

pressure waves is that, for small amplitude waves, the varia­

tions of u, p, and p are small, and the non-linear terms in 

the momentum and continuity equations can be neglected; for 

finite amplitude waves, these small signal approximations 

are not valid. 

The condensation s is defined as: 

where is the static density and p is the static density 

plus the Instantaneous variation in the density due to the 

acoustic wave. By definition, signal waves require that 

s « 1. The speed of sound is also considered to be constant 

for the small signal case. 

The pressure term In the momentum equation can be 

rewritten by making use of the equation for the speed of 

sound, as follows: The momentum Equation 

2-A and continuity Equation 1-A can be written as : 
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f " H + T = ° (5-A) 

It + P H + " li • (G-A) 

Substitution of p from Equation 4-A into Equations 5-A 

and 6-A reduces the momentum and continuity equations to: 

« (7-A) 

# + = (8-A) 

Using the small signal approximations that s « 1 and 

that the speed of sound is constant at a value of C and 

neglecting the non-linear terms, s u and u 

simplify Equations 7-A and 8-A to: 

If + H = 0 (9-A) 

<=0 H = 0 

Equations 9-A and 10-A can be further reduced to the 

classical acoustic wave equation in terms of either u or s: 

4 - 4 = ° (ii-A) 
at^ ° ax^ 

-^ = 0 (12-A) 
at^ ° ax^ 

Solution of Equations 11-A and 12-A indicates that small 

amplitude acoustic signals should propagate as unattenuated 

and undistorted waves. Forward-traveling waves of the form 

u = f(C^t-x) and s = g^C^t-x) are possible solutions of 

Equations 11-A and 12-A. Using these solutions in Equation 
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9-A gives the relationship between s and u as: 

C o 8  = u  ( 1 3 _ A )  

Use of the adiabatic condition shows that: 

^ (l+s)Y=^+Ys) Qp YS =-^ (I4-A) 
0 0 

Substituting Equation 13-A into l4-A gives a relationship for 

the particle velocity as a function of pressure: 

AP = u PgCg (15-A) 

Since and C are constants, it follows from Equation 

12-A that the pressure change AP must also satisfy the same 

wave equation as u and s. 

The acoustic intensity can now be determined. By 

definition, the small signal acoustic intensity in watts/cm 

is the time average of the product of the acoustic particle 

velocity and the acoustic pressure. If the pressure and 

velocity waves have no phase difference, the acoustic intensity 

is expressed as: 

(16--A) 

where AP is the magnitude of the sinusoidal pressure wave, 

and I is the intensity of the acoustic wave. 

The reason for considering the small amplitude analysis 

is to find whether or not a "small acoustic signal" will give 

an adequate variation of the refractive index to be used in an 

acoustic electromagnetic probe. 



www.manaraa.com

69 

The empirical formula for the refractive index is 

expressed as n = 1 + -^^10"^, where T is the temperature in 

p 
degrees Kelvin, and P is the pressure in dynes/cm . Typical 

expressions of n are assumed in this thesis to be of the form 

n = 1 + 10~^Q(x), where Q(x) is a real function of position 

with a magnitude of the order of unity. The coefficient 

10"^ of the spatial variation of n corresponds to a pressure 

variation AP of 3.71(lO^) dynes/cm^. This pressure corresponds 

to an intensity level of approximately l42 db. The reference 

"1 

level for measuring acoustic intensity is taken as 10~ 

watts/cm , the threshold of audibility of an average individual. 

In comparison, the average conversation intensity level is 

30 db. The corresponding particle velocity is 9.905 meters/ 

second. Prom these calculations, it can be seen that neglect­

ing particle velocity in the momentum and continuity equations 

is subject to serious question. A more accurate analysis of 

the acoustic wave can be made by" using the method of character­

istics. 

Finite Amplitude Acoustic Waves 

The method of characteristics gives a solution of the 

momentum and continuity Equations, 5-A and 6-A, without 

neglecting the non-linear terms. 

A complete solution will not be presented here, inasmuch 

as Blackstock (2) has given a detailed discussion of this type 

of rather involved problem. It will be shown that the acoustic 
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wave does not propagate as an undistorted wave; and, as it 

propagates away from the generator, it assumes a sawtooth 

shape. 

Essentially, the method of characteristics is a mathe­

matical method that can be used to solve equations of the form 

f -|| + g = h, where f, g, and h can be functions of u, x, 

and y. Detailed discussions of this type of mathematical 

analysis are given by Courant (4), Jeffrey (7), Liepmann 

(9), and Webster (16). 

An extremely simplified explanation of this method will 

be described. To start the solution, the assumption is made 

that w^^ y 2)= u^^y^-z is known and that this function 

describes a continuous surface in x, y, and z space as 

illustrated in Figure 18. The ratio of the components of the 

gradient of this surface u at some point x, y, z is : -1. 

In vector notation, the unit normal a^ can be written as 

ân = Î If a line tangent to the surface at x, 

y, z is described by the vector + then 

= f-|^ + g-|^-h = 0, which is the equation to be 

solved. 

If ds is a segment of the tangent curve C traced by 

the projection of ds upon any axis is the product of ds and 

the direction cosine of the angle between ds and the axis of 

interest. Thus, for the point w = u^^^-z = 0, =f, -gf = g 

(5.Z 
and -^ = h. If just the xy plane is considered. 
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Figure 18. Diagram of continuous surface 
w = u(xy) - z. 
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U(x,y)-z = W(x,y,z) 
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= (17-A) 

ds 

The continuity and momentum Equations, 5-A and 6-A, can 

be reduced to the form f-|^ + g|^-h = Oby substitution of 

an expression for the particle velocity which can be obtained 

readily from an extension of small signal acoustics. 

Figure 19 illustrates a wavelet superimposed upon a 

small signal acoustic wave. The wavelet will not travel at 

the same speed as the small signal wave. For example, at x^ the 

density of the wave is higher than the average; then C. = C 
pn Jzl ° 
(—) 2 is larger than C^. Thus, when the density of the 

0 

small amplitude wave increases, the speed of the wavelet 

Increases. Conversely, as the density decreases, the wavelet 

speed tends to slow down. 

The particle velocity of the wavelet from Equation 13-A 

is C s^ = u^, where u^ is the change in the particle velocity 

from that of the small signal wave. If the wavelet Is 

considered. Equation 13-A can be written as C = Au as an 

approximation. In the limit, u becomes 

.P 
u = ; 0 ̂  (18-A) 

Po 

Equation l8-A, because of the limits, gives the total velocity 

of the particles. If the process is adiabatic. Equation l8-A 

can be integrated; and u is found to be: 

T 
u = 2 (o-c^) (ig-A) 
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Figure 12. Schematic representation of a wavelet 
superimposed on a sinusoidal small 
amplitude acoustic wave. 
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Combining Equation 19-A and the equation for the velocity of 

sound gives an expression for pressure of; 

^ u 2Y/ y-1 
^0 ( C ) (20-A) 

Similarly, by the use of the equation for the velocity of 

sound and an adiabatic process. Equation 19-A can be solved 

for the density p. Substituting the density p for and 

in Equations 5-A and 6-A reduces these two equations to a 

single equation as a function of u and C: 

#  + "3# + = #  = = (21-A) 

This equation can be solved by the method of characteristics, 

that is, f, g, and h are easily identified as f = u + C, 

g = 1, and h = 0, respectively. Therefore, Equation I7-A is: 

"Il = u + C (22-A) 

where the plus sign corresponds to waves traveling in the 

positive x-direction and the negative sign to waves traveling 

in the negative x-direction. Substitution of C as a function 

of and u from Equation I9-A reduces Equation 22-A to: 

3#lfor fixed u = Go + i (v+l)" (23-A) 

for positive-traveling waves. For a given u distribution 

along one of the axes of the x,t plane, the basic wave shape 

can be found. A diagram of the process that might be used 

to find the u distribution is shown as Figure 20. When the 

slopes of the constant velocity (u) cross, the solution 
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Figure 20. Schematic representation of the progressive 
distortion of a finite amplitude acoustic 
wave as it propagates away from the generator. 
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ceases to have physical meaning because it is assumed that 

the velocity cannot be double valued. The velocity wave might 

look like the wave shown in the top part of Figure 20. 

The pressure wave will be similar to the velocity wave. 

This fact is evident if the pressure Equation 20-A is expanded 

by the binomial expansion P = (l + •^). Thus, in the limit 
o 

of large distances and long propagating times, a finite 

amplitude sinusoidal acoustic wave degenerates into a sawtooth 

wave. 

Fourier Series Approximation of the 

Finite Amplitude Acoustic Wave 

It was shown previously that for finite amplitude acoustic 

waves, the pressure wave form degenerates to a sawtooth-shaped 

wave. To analyze the effect this wave form has upon the 

reflection coefficient, a Fourier analysis was made of the 

pressure wave. 

The coefficients of the Fourier series were evaluated by 

equating the "power" in the assumed sinusoidal wave to the 

"total power" in the coefficients of the Fourier series. 

Equating the power in the series expansion is equivalent to 

equating the sum of the squares of the pressures of each of the 

harmonics of the series, to the pressure squared of the 

sinusoidal wave. 

The Fourier series for the finite amplitude wave is 

00 

f(x) = S (-l)'^ — A^ sin n k^x. If, as an approximation to 
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the pressure wave, the first three harmonics are used, then 

the following function approximates the sawtooth wave form: 

f(x) = -A k^x + "I sin 2 k^x - sin 3 k^x. If is the 

pressure of the assumed sinusoidal acoustic wave which gives 

a refractive index variation of n = 1 + 10"^ sin k x, the 
a 

first coefficient is A = -^ The Fourier series for the 

calculated pressure which corresponds to the 10"^ coefficient 

of the refractive index is: 

f(lO"^) = 10"^[-,.855 sin k^x + .427 sin 2 k^x 

- .285 sin 3 k_x] (24-A) 
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